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Summary
A mathematical model for a general multibody flexible spacecraft is obtained. The generic
spacecraft considered consists of a flexible central body to which a number of flexible multibody
structures are attached. The coordinate systems used in the derivation allow effective decoupling
of the translational motion of the entire spacecraft from its rotational motion about its center of
mass. The derivation assumes that the deformations in the bodies are only due to elastic motions.
The dynamic model derived is a closed-form vector-matrix differential equation. The model

developed can be used for analysis and simulation of many realistic spacecraft configurations.

1 Introduction

A class of next-generation spacecraft is expected to inlude nonlinear, multibody, flexible space
systems. Some of the current spacecraft can also be catagorized under this class. Examples
of such systems are [1] : satellites with flexible appendages, such as solar arrays and antennas,
space-shuttle with remote manipulator system (RMS), and flexible space platforms with multiple
articulated payloads. Mathematical modeling of these systems is quite complex. This problem
has been addressed in the existing literature (e.g., see [2]); however, in this paper, a different
approach is taken to derive the equations of motion which yields compact closed-form equations of
motion. The derivation uses modeling techniques similar to those used in the robotics literature
(e.g., see (3], [4]). The formulation is relatively general and can be used for a large class of
spacecralft.

First, for the sake of completeness, some of the mathematical aspects of modeling rotat-
ing systems are summarized in the section on mathematical preliminaries. Next, the kinematic
equations, i.e., the position, velocity, and acceleration relations, for a particle mass of the sys-
tem are obtained. Once the kinematic equations are derived, the dynamics of the system can
be modeled by using various methods; for example , the Newtonian approach, the calculus of
variations approach, and the Lagrangian approach. The equations of motion derived using any
of these methods are equivalant; however, the Lagrange-Euler formulation is used here since it is

an energy-based approach (i.e, it uses scalar formulation) and is easy to work with compared to



Newtonian approach which deals with vector quantities. It is assumed in the derivation that the
bodies deform only due to the elastic motion. However, any other deformations such as thermal
deformations can be easily included in the formulation with some modifications in the potential
energy function.

In deriving the kinematic equations for the chain of multiple flexible bodies, the coordinate
systems become an important element of the derivation. A large part of kinematics deals with
the coordinate transformations used to represent the position and orientation of the body. In
view of this, we will begin with a study of the operations of translation and rotation, and the

transformations which are used to represent these motions.

2 Mathematical Preliminaries

2.1 Rotations

Consider a rigid body as shown in Figure 1, to which a body-axis system, i.e., a body-fixed
coordinate frame, (X, Y, Z;), is attached. Let (X,,Y,, Z,) represent some fixed reference frame
whose origin is concentric with the body axes system. Our aim is to relate the coordinates of
a point P on the body in the (X,,Y}, Z;) frame to those in the (X,,Y,,2Z,) frame. Let 4y, 75, ks
denote orthonormal basis vectors in the body frame and ¢,, j,, k, denote the orthonormal basis

vectors in the fixed frame. Then, the position vector of point P, Tp, in the body frame is given as

o = Thaty + Thyfb + 7oz ks (1)
and in the fixed frame is given by

F;o; = Toa:io + Toyjo + Tozko (2)
Since Fg and 7, are representations of the same vector Tp, the relation between the components

of 7, in two different systems can be obtained as follows.

Tbrzib'ngib-F; (3)
Similarly,
Toy = b T = jb T (4)



and
The = ky - Tp = ky T (5)

Equations (3)-(5) can be rewritten in a compact form as

Tbe Toz
Thy = RZ Toy
Tbz Toz
or, notationally,
= R (6)

where
bole W Jo ik
RBo= 1 jyio jo-jo gs- ko (7)
ky o ky-jo k- k,
Similarly, the coordinates of Tp In the fixed frame can be expressed in terms of the coordinates

in the body frame as
7 = R (8)
where
Lot o' Jb to- ke
By =1 Jorts Jorjo Jo-hs (9)
ko -ty ko jo ko ks

Since dot products are commutative, from equations (7) and (9), we can see that

Ry =R = R (10)
and
Ry =R" =R (11)
Then,
RR =RTR =R"R = |, (12)

where I3 is the 3 x 3 identity matrix. The transformations, R and R®, are called ‘orthogonal’

transformations. These transformations are also referred to as ‘orthonormal’ transformations
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since all column vectors in the transformation matrix are unit vectors in addition to being
orthogonal. Thus, the transformation matrices can be used to relate the representations of the
same vector in two different coordinate reference frames. Note that the transformations do not
change the vector itself but only its representation. Another important thing to be noted is that
the rows of Ky are the direction cosines of i,, j,, and k,, respectively, in the body coordinate
frame. |

Matrices R’ and Ry can also be interpreted as rotation matrices wherein (2, Jb, ks) are or-
thonormal basis vectors in the final direction of the (i,, j,, k,) axis system after rotations about
the selected coordinate axes. The properties of rotation matrices are developed in the next

section.

2.2 Basic Rotation Matrices

When the rotation matrix represents a change in orientation about any one of the principal
coordinates of the reference frame, X, Y, or Z, it is called as the ‘basic’ rotation matrix. So, if
a new coordinate system, say B(%,7,w), is obtained by rotation « of the old coordinate system
, say A(u,v,w), about X axis, then the basic rotation matrix associated with this rotation is
given by, Rf = Ryx.,. Similarly, the basic rotation matrices associated with rotations, # about Y
axis and v about Z axis, are given by Ry and Rz, respectively. Referring to Figures (2a)-(2c),
the basic rotation matrices can be written as

Fl 0 0

Rxa=1|0 cosa —sina (13)

0 sina cosa

cosff 0 sing
RY,H = 0 1 0 (14)
—sinf 0 cosf

cosy —siny 0
Rz, = siny cosy 0 (15)
0 0 1




The reason these matrices are called basic rotation matrices is because any finite arbitrary ro-
tation can be achieved by a composition of these matrices. However, since the finite rotations
are not commutative, the order of multiplication of these matrices during composition is very

important.

2.3 Composite Rotations

As stated previously, any arbitrary finite rotation can be achieved by a composition of the basic
rotation matrices, i.e., by following a sequence of basic rotations. In obtaining the composite
rotation matrix there are three different possibilities. The successive rotations can take place
either about the prinicipal axes of the fixed reference frame, or it can take place about the
principal axes of the rotating frame itself, or a combination of both. The following procedure
can be followed to obtain a composite rotation matrix.

When the rotation occurs about any principal axis of a fixed reference frame, premultiply the
last resultant rotation matrix by the corresponding basic roation matrix and, when the rotation
occurs about any principal axis of rotating reference frame itself, postmultiply the last resultant
rotation matrix by corresponding basic roation matrix.

Let us suppose that the two axes systems, OXY Z (fixed) and ozyz (rotating), are initially
coincident. Then the rotation matrix will just be an identity matrix, /5. Now suppose that ozyz
undergoes the following sequence of rotations. It rotates about OX axis through an angle a and
then rotates through an angle ¢ about oz axis. The composite rotation matrix in this case will

then be given by

R = Rxol3Res = RxoRey = Rx(as4) = Ruare) (16)
1 0 0 I 0 0 1 0 0
R=10 cosa —sina 0 cosp —sing [ =0 cosla+¢) —sin(a+ ¢) (17)
0 sina  cosa 0 sing cos¢ 0 sin(a+¢) cos(a+ @)

2.4 Rotation About an Arbitrary Axis

In many cases, the rotations of the body-fixed coordinate system take place about an axis other

than the principal axes of the fixed frame or the rotating frame. In the case when the rotation
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takes place about an arbitrary axis, the rotation matrix can be obtained as follows. Referring to
Figure 3, let ¥ = {v,,v,,v.}" be the unit vector along the axis of rotation and ® be the angle
through which the rotation takes place. Now obtain the rotation matrix for following sequence
of operations. Rotate ¥ about OX by angle a which will bring vector v in the X Z plane. Then
rotating about QY axis by —f will align © vector with OZ axis. Then rotate about OZ or & by
angle ¥ and then reverse the rotation order to bring vector 7 back to its original position. This

sequence of rotation will lead to the following composition of basic rotation matrices.
R= Rx, _oRypgRz 4Ry _pRx . (18)
Noting that,

sino = cosQa =

Vy v,
\/VE + v} V2 + v?
sinf=v, cosp = /v + v? (20)

the rotation matrix can be rewritten as [3]

VAL = cosy) + costp vu,(1 — cosp) — v.sing v, (1 — cosy) + vysiny
R = vv,(1 — costh) + v,siny ve(1 — cosp) + cosp  vyv,(l — cosyh) — vsing (21)

vrv: (1 — cospp) — vysing vy, (1 — cosyp) + vesing  v2(1 — cosy)) + cosy

In mathematical notation, these 3 x 3 rotational matrices are said to belong to SO(3) space.

The notation SO(3) stands for Special Orthogonal group of order 3 [4].

2.5 Properties of Rotational Matrices

The rotational matrices have some special properties which play an important role in the math-
ematical modeling of the system. These properties are listed below.

1) As shown previously, RT = R, i.e., RRT = I.

2) The columns of R represent the unit vectors along the principal axes of the rotated coordinate
frame with respect to the reference frame unit vectors.

3) Since RT = R~! the rows of rotation matrix represent the unit vectors along principal axes of

reference frame with respect to rotating frame.



4) Any row (column) of rotation matrix is orthonormal to any other row (column). This is the
direct consequence of properties 1 and 2.

5) If @, b € R®, where R? is 3—dimensional Euclidean space, then R(a x b) = Ra x Rb where
symbol x denotes vector cross product. {Note that this equality is valid only for orthogonal

rotational matrices)

2.6 Skew-Symmetric Matrices and Cross Product Operator

A skew-symmetric matrix, &, has the property: s; = 0 and s;; = —s;; for ¢ # j. Then, an
immediate consequence of this property is given by: S + 87 = 0. These matrices play an
important role in the computation of vector-matrix operations involving vectors belonging to R3
space and matrices belonging to RO(3) space. To illustrate, consider a vector cross product @ x b
which can be written in terms of vector-matrix multiplication as S(@)b, where S(-) is referred as

the ‘cross product operator matrix’, and is given by

0 -—a. ay
S(a) = a, 0 —ag (22)
—ay ag 0

This cross product operator matrix has some important properties which are discussed below.

For the sake of simplicity, we will use the following simplified notation in the remainder of the

paper.

S() =) (23)

2.7 Properties of Cross Product Operator Matrix

1) Using property (5) of rotational matrices and the definition of S(-), it can be shown [4] that
for any vector, 7 € R* and R € RO(3),

RS(v)RT = S(Rv) (24)

2) If Ry represents the rotation about an axis aligned with vector 7 by angle 8 then the derivative



of R with respect to § is given by [4]

dR5,
do

= S(%) Ry (25)

3) As an obvious consequence of the cross product property, we obtain another property: S(7,)v; =

—8(7,)v1, where T, and T, are 3-vectors.

3 Mathematical Modeling

The objective of this section is to derive the equations of motion for nonlinear, multibody, flexible,

spacecraft in the most general framework possible.

3.1 Modeling Considerations

The focus configuration of a generic spacecraft under consideration has a branched geometry with
a relatively large central body. The system under consideration can be schematically represented
by the configuration shown in Figure 4. It is assumed that all bodies in the system are flexible.
The deformations in the bodies are assumed to be due to elastic motions only; however, any
other deformations such as, due to thermal effects, can also be modeled if required. The system
model under consideration has cluster configuration. It consists of one central body attached
to various appendage-bodies to form a branch geometry. For the purpose of derivation the
following notations are used. Let each body be denoted by B;; where, the first subscript indicates
the branch the body belongs to and the second subscript indicates the body number in that
particular branch. Since the number and the locations of various bodies are arbitrary the system

configuration is highly general.

3.2 Coordinate Systems

Referring to Figure 5, X, Y7, Z; is the inertial coordinate system; X., Yo, Zcm 1s the coordinate
system with the origin fixed at the center of mass of the entire spacecraft and is aligned with
the inertial frame; X.,Y,, Z. is the coordinate frame attached to the central body with the origin

attached to the center of mass, and X;;,Y;, Zi; represent the local coordinate system attached
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to the 75-th body with the origin located at the point of connection between i(; — 1)-th body
and ij-th body. The motion of each local coordinate system origin, O;;, is defined with respect
to the previous local coordinate frame. In order to derive dynamical equations, it is necessary
to obtain expressions for the kinematic quantities, i.e., the position, velocity, and acceleration of

the spacecraft.

3.3 Kinematics of a Spacecraft

Consider a spacecraft with its instantaneous center of mass located at O, (Figure 5). Then,
the vector, 7., , determines the inertial position of the spacecraft. In order to decouple the
translational motion of the entire spacecraft from the rotational motion about its center of mass,
for the reasons that will be apparent later, the orientation of the frame Xems Yem, Zem 18 assumed
to be same as X, Y], Z;, i.e. the rotation matrix, R!_, will be an identity matrix. The vector F.,,
can be expressed in terms of orbital elements [2]. Vectors @, and 5, represent displacement of the
center of mass of the central body due to rigid and elastic motions, respectively. Vector 7. then
represents the vector sum of these two vectors, i.e., 7. = @. + p,. In addition to the translational
motion of the entire spacecraft, the spacecraft can undergo the rotational motion about its own
center of mass. This motion can be characterized by the rotational transformation, R™, between
Xems Yoy Zem and X, Y., Z.. Since, Xem, Yom, Zem and Xp, Y7, Z; are aligned, RS™ describes the
orientation of the spacecraft with respect to the inertial frame also. R°™ is generally obtained
by using Euler rotations. Other rigid body degrees of freedom arise from the interconnections
between different bodies of the spacecraft, each of which can be described by the transformation
of the type, Rzgj_l), between any two consecutive body frames in the chain. O;; represents the
origin of the ij-th body frame and its position with respect to i(j —1)-th body frame is defined by
vector 5;;. Also, each 5j; is the vector sum of @; and p.;» where @;; and p;; represent rigid body
and elastic displacements of 7;j-th frame, respectively. First, the equations for position, velocity,
and acceleration will be obtained for a representative particle mass dm in the 17-th body, i.e.,
the j-th body in the i-th branch. Referring to Figure 6, the position vector of a particle mass

dm in ¢j-th body, in the local reference frame (i.e, ij-th frame), is given by

i, = dg, + i (26)



where E;{n and 77, represent rigid and elastic displacements of mass dm in i J-th frame. The

position vector of dm with respect to ¢(j — 1)-th frame is then given by
gy =5 + RY Vay (27)
dm = % dm

Finally, the position vector of dm in the inertial frame of reference is given by
_J -1
de = ch + Rgm Z R,kS,k + RI H;Jm (28)

where R}, is given by
R} = RLR™R; - R{™ (29)

1

The velocity of the particle mass dm is given by taking the time derivative of equation (28).

— = d I 3 d " I——'J
Vdm = Tdm = rcm + (R Z Rtks'k) + _(R'J dm
dt dt
k=j3—-1 k=j3-1
= Tem + R 5.+ }: RLsi) + Z (RLSu)
k 1 =1

+ Rlwj, +Rlu (30)

17 dm

Now using properties 2 and 3 (Section 2.5) of the cross product operator, noting that Rl =1,

and using the notation (23), the time derivatives in equation (30) can be evaluated as follows.

S, = éc + ﬁc = jcac + Z q)cchk = -icwc + Z Qckq.ck (31)
k k

where, p, = ¥, ®kqx, P is the mode shape matrix of the central body, and g¢. are the

generalized coordinates. Similarly,
8i = @i + pi; = W85 + 3 Pijkdie = — 5@ + Y Biskdisi (32)
k k

where, ﬁ,-j = 2k PujkGije and @yji, ¢k being the k-th mode shape matrix and generalized coordi-

nate for z5-th body, respectively.

RI ;S = Rszfl - R'(J 1)— 5+ RcmR Ri(J 1):3-”,

17 17

+ --+R"™R;,--- R:g’ 1)31'_7'

(R By - RS ™V5,)w, + B (R - RY™V5,)m,

1) (¥
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+ oo+ RRG - ROTD(RYT 3,)@; (33)

RI U:i]m = (Ro"RY, - .R‘JJ 1)—11 ' @, + R(R - -Riﬁj'l)ﬁij;n)wil
+ 4 Rngngfl Ce. R:g f;( '(J 1)—’] )—’J (34)
i Y] g
Riljﬂdjm = Rzl(ddm + dem)

Il

RI (Wud + Z ‘I’Uk%k)
= RI ddmwu Z q)zjk 9ijk (35)
Substituting equations (33) thru (35) in equation (30) we get

Vigm = Ve — Qe + Z q)cchk

— RC"‘[X:RUGL”wU +ZR (> ®ijndise)
k

=1 1=1

— J .
+ YRRy - R TVsg)me + RY(RGSS)0a
J 1=1

J

z 1) y— t 1) v—
+ 1(2 1) Z )'S’J wlz -+ Rt(] 1) (R (J )SZJ)wU

+ (RcmR . R1(J 1)—11 ) + Rcm( .. Rzgj l)ﬁfijm)wﬂ
b R R R (R ”a:fmw»j
RI w‘J + RI Z ¢1]kquk (36)

Simplifying and regrouping equation (36) gives

Vim = Vem + [— ac—{—z (Rem RS, - Riﬁ’ V5,) + (RmRg - R V@ o,
. J
+ [-RTGa+ R ((R 311 + R (R ﬂ;m)]wil + -
j=1

J
R + Ry (3 RET55) + Ry (R D5, )@
1=z
+ +[ Rcm— + R (Ri(J 1) Rem RZ(J 1)—1J
Ay 1(;—1) SU) + i(7—1) ( ]wU

- Ruddmww + Z Dokqer + Z R Z q)tykqwc + R Z q)zngUk (37)

1=1
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Equation (37) can be rewritten in a compact form as

i)-d — —l-)-ltiv;:ns +—'rot _ NI—)

(38)

where 72" and T are the contributions to the velocity vector of particle mass dm from the

translational and rotational-plus-flexible motion of the spacecraft, respectively, and

—tira
T ns

O = T
Ty = Np
N = [Is N]
P = {Tem p)7

(39)
(40)
(41)
(42)

In equations (39)-(42), NV is 3 x n matrix, n is the total number of rotational-plus-flexible degrees

of freedom, and p is n x 1 vector of generalized velocities corresponding to these degrees of freedom.

Matrix N has the following form:
N = [Nr:gid Ner:c]

(43)

where, V.4 is 3x3(Im+1) matrix related to the rigid degrees of freedom and Nitez 18 3xs(lm+1)

matrix related to the flexible degrees of freedom. For the sake of notational simplicity, and

without loss of generality, it is assumed that each chain structure has m bodies and that each

body has s flexible degrees of freedom. Then vector p has the form

s = p— — — — . . . . . T
P = [wC7wll7' ccWimy o 'wija' ‘ 'wlm,qu" * '(Ics,(hll,‘ * '(Iijk,' "les]

The matrices N,;5;4 and N fler are given as follows.

Nrigid - [NC7Ni17' . 12, e 1_7]

where

——

Nc = _ac+Z(RcmR o RzJJ 1)31]) (Rngfl Rz(J 1)U:ijm

1]
J

Na = [-R7'@,+ R™ Z 31] )) + Rcm(ngﬁ:fm)]

=1

12

(44)

(45)

(46)

(47)



Ny = [ Rf;natz +Rz(z 1) ZRz(Z I)EU) + Rt(z 1)(Rt(z_1)ﬁfi{n)] (48)

j=z
Ny = [—BTa, + R (R ™Vs,) + B (RY Vg )] (49)
(50)

and
Nftee = | Pk, - , R Z D,k Z <I)Uk (51)
k
Having obtained the expression for velocity, the kmetlc energy for the particle mass dm is given
by

1
dem = §E§m Vdm dm (52)

Then the kinetic energy for the entire spacecraft can be obtained by integrating equation (52),
le.,

1
T=/dnm=—/ﬁLmMMQ (53)
Q 2 Ja

where, p is the mass density, Uy, is as given in equation (37), and {2 denotes the spatial domain

of integration. Substituting equation (52) into equation (53), we get
1 TRF
T = /(Np) NppdQ
:2/ (N N \pudn (54)
Equation (54) can be rewritten in a compact form as

T = 3 M) (55)

where, M (P) is the mass-inertia matrix of the system and is given by

M(p) = [ (N Wudd (56)

M(p) is symmetric and positive definite matrix.
In practice, for the most spacecraft applications, a control engineer needs to know only

rotational dynamic model of the spacecraft since the translational motion of the spacecraft, as
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a whole, is controlled only periodically by separate thruster-jets whenever reboosting of orbit is

necessary. In such a case, the kinetic energy of the spacecraft is given by

1 —rotT—ro
Trot = é—/x;vd”f 72 pud§)

dm
1
= = [ (Np)TNpudQ
5 /ﬂ (Np)" Npp
= & [ FTNTN)pde (57)
2Ja
and the inertia matrix is then given by
M(p) = [ (NTN)ud0 (58)

M (p) is also symmetric and positive definite matrix. Using (57) and (58), Tyt can be rewritten

in compact form as

1. .
Trot = §pTM(p)P (59)

3.4 Potential Energy

The potential energy of the system could be due to many sources, such as elastic displacement,
thermal deformation, etc. The deformations due to thermal effects is not considered here, how-
ever, it can be easily included in the formulation if desired. Thus, it is assumed that the potential
energy has contribution only from the elastic strain energy. Also, it assumed that the materials
under consideration are isotropic in nature and that they obey Hook’s law.

For the isotropic materials obeying Hook’s law, the strain energy differential is given as
§V = / oT6edf) (60)
Q

which can be rewritten as

6V = [ win (61)
Q
where W is the strain energy density and has the form
V= 0uc€or + Oyyyy + ... + 0ysey, (62)
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Now, for materials obeying Hook’s law, following equality holds.

ol = Ec (63)
The strain-displacement relation is given by

e=Du (64)
where, u is the general displacement vector and D is the differential operator defined by relations

1 3. i .
€5 = 5 Uy + ujg + Z uk’i {2,] = 1,2,3} (65)
k=1

The vector u can be expressed in terms of modal coordinates as
u = dgq (66)

Now, from equation (64)

be = DPéq (67)

Substituting in 6V, get

§V = /Q oT6ed
- / T ED®6qdS)
Q
= / 47 (D®)T ED®SqdQ)
Q
= ¢ [ (D®)TEDDINS
o’ [ (D®) q
= TKéq (68)

where, K is called the stiffness matrix of the system and is given by
K= / (D®)T ED®d (69)
Q

The potential energy of the system is, then given by

1
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3.5 Equations of Motion

As previously stated, without the loss of generality, only the rotational motion of the spacecraft

1s considered in deriving the dynamic model of the spacecraft. If necessary, the translational

motion can be easily included in the equations of motion by using appropriate kinetic energy

term in the Lagrangian , i.e., by using T instead of T.,; and using p instead of p as a displacement

vector.

Using equations (59) and (70) the Lagrangian of the system is defined as
L=T,-V
For the purpose of convenience, L can be rewritten in the indicial notation as
L=Tu-V= %Z Mi;pip; = V(q)
t,J

The Euler-Lagrange equations for the system can then be derived from

a(ory oL _,
dt \ Opx ope *

(71)

(72)

(73)

where, F). are generalized forces from non-conservative force field. Evaluating the derivatives,

oL
== =) Myp;
apk j
and
d (0L . s
7 (@) = Xj:MijJ + ;Mkjpy
L OMy;
= 3 My + Y ——Lpip;
R i ap1
Also

OL _1g-0My. . OV
opr 2 7 Ok Pibs Opx

Thus the Euler-Lagrange equations can be written

. OMy; 10M,. .. oV
M, T R A A
EJ: kjpj+§{ o 2 ope }pib; oo F;

k=1,..,n

16
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(75)

(76)



By interchanging the order of summation and taking advantage of symmetry, it can be seen that

6MkJ 3Mk; oM

_1 i 78
Hence
aMk]' 1 8M,J 6Mk] aMk,' Bng ..
- = ; - iD; 79
The terms
1 8Mkj (‘3Mk, ,]
i — 80
Cin = 51t + ok = ) (80)
are known as Christoffel symbols. Note that, for each fixed k, we have Cyjx = Cjri. Also
oV R
B_Pk = Ki;q; (81)

Finally, then Euler-Lagrange equations of motion can be written as

EMka] + ZCU’VPIPJ + Dy;p+ ka]pj = I}, (k =1,2, ,n) (82)

,.7

where D is the inherent structural damping matrix and Dp is the vector of nonconservative
forces.

In the equations (82), there are four types of terms. The first type of terms involve the
second type derivative of the generalized coordinates. The second are quadratic terms in the
first derivatives of p, where the coeflicients may depend on p. These terms can be further
classified into two types. Terms involving a product of the type p* are called centrifugal terms,
while those involving a product of the type p;p; where ¢ # j are called Coriolis terms. The third
type are the ones which involve only the first derivative of the generalized coordinates and they
are the dissipative forces due to the inherent damping. The fourth type of terms involve only p
but not 1ts derivatives. These arise from differentiating the potential energy. In the matrix-vector

notation, the equations (82) are written in a compact form as
M(p)p+C(p,p)p+ Dp+ Kp=F (83)

The k, j-th element of the matrix C(p, p) is defined as

n
c; = Y cije(p)pi




Now, an important property of systems whose equations of motion are given by (83), is derived
next.

Theorem.- The matrix S(p,p) = M(p) — 2C(p, p) is skew symmetric.

Proof.- The kj-th component of the time derivative of the inertia matrix, M (p) is given by the

chain rule as
n

. oM,; .
My; = Z—a—pi_cipe

Therefore, the kj-th component of S = M — 2C is given by

=1

Skj = Mk,-—-Zij

" [OMy  OM,; M. OM.].
= — + — i
g [ Ip; { Op; 0p; Opx P
n (oM, aMk.] .
=y |OMy oMy 85
2 [ ope ~ op; |? (83)

Since the inertia matrix is symmetric, i.e., M;; = Mj;, it follows from (85) by interchanging the
indices £ and j that
Sik = —Sk;

This completes the proof.

3.6 Conclusions

A generic mathematical model for a class of multibody flexible spacecraft was developed. A
judicious choice of coordinate systems was made which allowed decoupling of translational and
rotational dynamics of the spacecraft. This is a useful way of modeling spacecraft dynamics
since, depending on the application, one can choose to use only rotational, or translational,
or a complete rotational-plus-translational dynamic model of the spacecraft. Although only
rotational model was presented, the Lagrangian formulation was done for a complete rotational-
plus-translational dynamic model of the spacecraft. In the derivation of potential energy, an
assumption was made that potential energy terms are only due to elastic deformations; however,
as stated previously, the potential energy contributions from any other sources of deformations,
such as thermal deformations, can also be included in the same way as elastic deformations.

The model developed can be used for multibody spacecraft such as space-based manipulators,
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multipayload platforms, satellites with flexible appendages, and many more. With minor modi-
fications, the model can be used even for terrestrial robots. In summary, most spacecraft models

can be obtained as special cases of the model developed in this paper.
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Figure 5. Coordinate systems
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